in the news ...

Climate change is making
the wood lighter

@ Manuela Casasoli » SCIENCE Aug 22,2018 5

As global temperatures rise, trees around the world are experiencing longer
growing seasons, sometimes as much as three extra weeks a year. All that time
helps trees grow faster. But a study of the forests of Central Europe suggests
the higher temperatures—combined with pollution from auto exhaust and
farms—are making wood weaker, resulting in trees that break more easily and
lumber that is less durable.

Pretzsch et al. (2018) Wood density reduced while wood volume growth
accelerated in Central European forests since 1870.
https://www.sciencedirect.com/science/article
/pii/S0378112718310600?via%3Dihub

Climate change is making trees bigger, but weaker
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B Impact du changement climatique sur
la formation du bois

Patrick Fonti
Institut fédéral de recherches sur la forét, la neige et le paysage WSL
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Climate impact

. 5. THE CLIMATE-GROWTH SYSTEM 227
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endroclimatology
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Two ways to investigate
climate -> structure

« 1. Tree-ring anatomy (retrospectively)

+ Z. Xylogenesis (observations “live”)



1. Tree-ring anatomy

« Linking climatic/

environmental variability to

dated time series of cell
anatomical features
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Example
Castagneri et al 2017

Long-term high-resolution signal
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Example

Pobkova et al. 2018
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FIGURE 4 | Comparison of climate, growth rate, and modeled wood structure among the three ring types [narrow rings (green); wide rings (blue); IADF rings (red)].
(A) Daily temperature (dots) and precipitation (area) averaged for each the year in each ring type and smoothed with a LOESS function (span = 0.3, thick lines). The
smoothed values have been used as input for the model, (B) Growth rates obtaned by the model, (C) Derived tracheidogram for each ring type by using the
quantified refation between average cell growth rates and tracheid diameter (Figure 3D). The number of cell is proportional to the modeled ring width. (D) Schema of
the tracheidogram shown in (C).
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+ to find out what is happening when and at what
speed
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Roughly 40, 55, 65
days
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Cunyetal 2014 _ "
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Example
Cuny et al 2018
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FIGURE 6 Morphology and associated derived cell functional performance of the earlywood xylem cells produced in European larch and
Norway spruce simulated according to three scenarios (warm, cold, and cold without compensation). Simulated tracheids were built using the
relationships presented in Figure 3 and assuming a 5°C thermal gradient between the “warm” and “cold” scenarios. The “cold without
compensation” scenario corresponds to the simulations performed for the theoretical cold site but using the durations of the theoretical warm site
in order to test the effect of the compensation played by the duration on the final cell dimensions and mean associated functions (from the
bootstrapped models). The cell, wall and lumen cross-sectional areas (CCA, WCA, and LCA), and the tangential wall thickness (WTT) of the
simulated tracheids are given [Colour figure can be viewed at wileyonlinelibrary.com]



Impact on functions

cold or dry => less, smaller and thicker
cells

increased density?

reduced hydraulic
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Quantifying lumina of all tracheids in axial
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@ Scotts pine #1

Scotts pine #2
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Conclusions

« Climate change affects structure and function, however the unknown is about

+ how
« how much

« What are the consequences

« two methods; tree-ring anatomy and xylogenesis

« First indications:
« in cold environment heat promotes larger and thicker cells

« in dry environment too much heat and drought induce less, smaller and denser cells

+ Still more to investigate
« hardwood

« Structure-function-properties




