

THAI Minh-Van^{1,2}, ELACHACHI Sidi Mohammed¹, GALIMARD Philippe¹, MENARD Sylvain²

¹I2M, University of Bordeaux, 33000 Bordeaux, France. ²Université du Québec à Chicoutimi, Canada. minh-van,thai@u-bordeaux,fr

Context

- Cross laminated timber (CLT) is an engineered wood product suitable for floor systems CLT floors usually have maximum span from 6-7m. For long span timber floor (>8m),
- vibration criteria conditioned the design CLT-concrete composite (CCC) is a solution for long span floor

Propose a simplified FE model to estimate the natural frequencies of CCC floors Comparison between with analytical models, FE models and experimental results

Objectives

- Specimens: 3 composite beams fabricated from 3 bare CLT panels (9m x 1m) with different number of connectors. Effective span 8,7 m. (c.f. Figure 1) Beam 1: No connector -> Non-composite Beam 2: One row of 10 connectors -> Low-composite
- Beam 3: Three rows of 26 connector -> High-composite
- Materials: Timber, concrete, steel mat 150x150 mm, thin film polyethylene to separate timber and concrete
- Timber: CLT grade E1, thickness 175 mm
- Concrete: C35, with E_c = 26773 MPa, thickness 80 mm
- Connector system: Notch reinforced by two vertical screws
- Dimension: 200 x 200 x 25 mm (c.f. Figure 1)
- Shear stiffness: 242 kN/mm, coefficient of variation 13% (Thai et al., 2020)
- Vibration test: roving accelerometer method
- Excitation source: hammer impact (hit at point 15)
- Data acquisition by a grid of 24 accelerometers (c.f. Figure 2)

Figure 1: Bare CLT panel with notch connector on the upper surface. From left to right: beam 1, 2 and 3.

Models for natural frequencies estimation Finite elements models

Analytic models

Wu et al. (2007) proposed an exact solution of frequency of simple supported beam, based of Euler-Bernoulli beam theory.

$$f_n = \frac{n^2 \pi}{2} \sqrt{\frac{EI_{eff}}{mL^4}}, \quad EI_{eff} = \overline{EI} \left[1 - \frac{\beta^2 - 1}{\frac{\tilde{\alpha}^2}{(n\pi)^2} + \beta^2} \right]$$

$$\tilde{\alpha}^2 = \frac{k}{s}L^2 \left(\frac{1}{E_1A_1} + \frac{1}{E_2A_2} + \frac{h^2}{\Sigma EI}\right); \quad \beta^2 = \frac{\overline{EI}}{\Sigma EI}; \quad \overline{EI} = \Sigma EI + \frac{E_1A_1E_2A_2}{E_1A_1 + E_2A_2}h^2$$

- (EI) eff: Effective bending stiffness of a partial composite beam,
- β : Parameter related to the geometry and modulus of elasticity of the materials,
- α : Parameter involving the stiffness of the shear connector,
- m and L : Mass and Length of the beam,
- k : Shear stiffness of the connector

Built in Abagus CAE environment Element: Plane B21 (2-node linear beam) DOF at each node: two translational and one rotational Timber: v = 0,4, $\gamma_t = 515 \text{ kg/m}^3$, E_t varied by beam Concrete: v = 0,2, $\gamma_c = 2450 \text{ kg/m}^3$, $E_c = 26,8 \text{ GPa}$ Diagram of model (c.f. Figure 3)

- 1. Support
- 2. Vertical strut elements, rigid in terms of axial stiffness
- 3. Concrete elements
- 4. Timber elements
- 5. Horizontal connector elements, a spring element with defined horizontal stiffness (connector stiffness)

Element size 50 mm based on mesh sensitivity analysis (c.f. Figure 4).

NORDIC

STRUCTURES

Result and discussion

Acknowledgment

The authors are grateful to Natural Sciences and Engineering Research Council of Canada for the financial support through its IRC and CRD programs (IRCPJ 461745-18 and RDCPJ 524504-18), the Region Nouvelle Aquitaine for the financial support (ref. 2017-1R10223), and the industrial partners of the NSERC industrial chair on eco-responsible wood construction (CIRCERB)