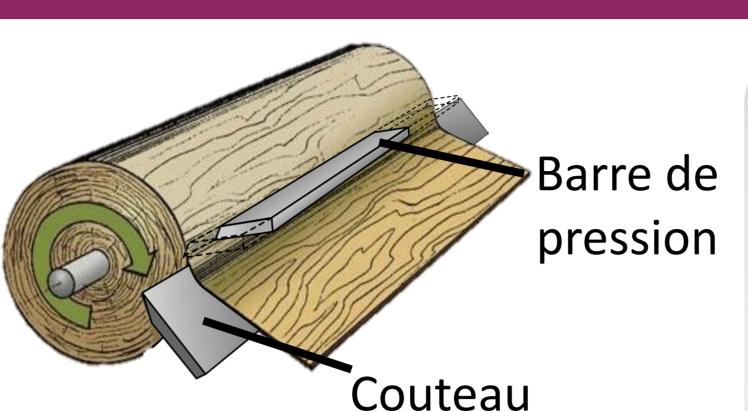
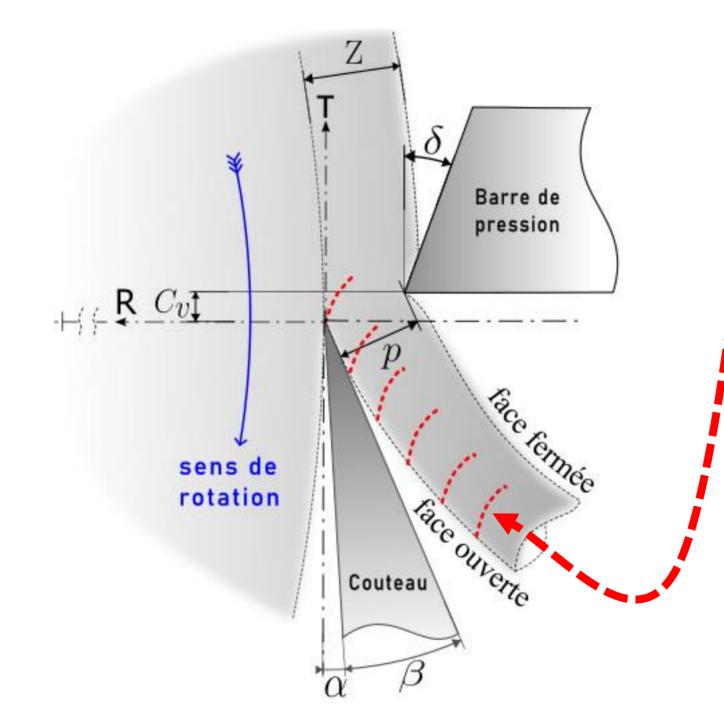
Détermination des paramètres géométriques optimaux de coupe en déroulage pour 5 essences de bois feuillus français

CURIAL Hugo, DENAUD Louis, VIGUIER Joffrey, **MARCON Bertrand, COTTIN Fabrice**

LaBoMaP, Arts et Métiers, Rue Porte de Paris 71250 Cluny, France Contact: <u>hugo.curial@ensam.eu</u>




Contexte et problématique

Valorisation de 5 essences de bois feuillus par déroulage

- Charme
- Chêne rouge
- Chêne pubescent
- Robinier
- Grand érable
- > Détermination des paramètres de coupe
- > Etude des propriétés mécaniques des placages et des produits collés

Rôle de la barre de pression :

- Limiter la fissuration et améliorer l'état de surface **Compression faible:**
- ✓ Efforts faibles → faible couple d'entraînement
- **x** fissuration profonde et placages rugueux

Compression forte:

- Fissuration moins profonde et meilleur état de surface
- Risque de patinage des broches entraînant le billon et plus fortes déformations au séchage

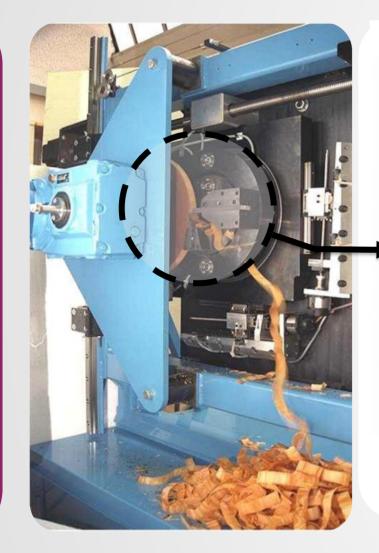
Z	Avance par tour (épaisseur du placage souhaité)						
α	Angle de dépouille						
β	Angle de taillant						
$\mathbf{C}_{\mathbf{v}}$	Cote verticale ($C_v = 0.3 \times p$)						
p	Passage						
δ	Angle d'entrée						

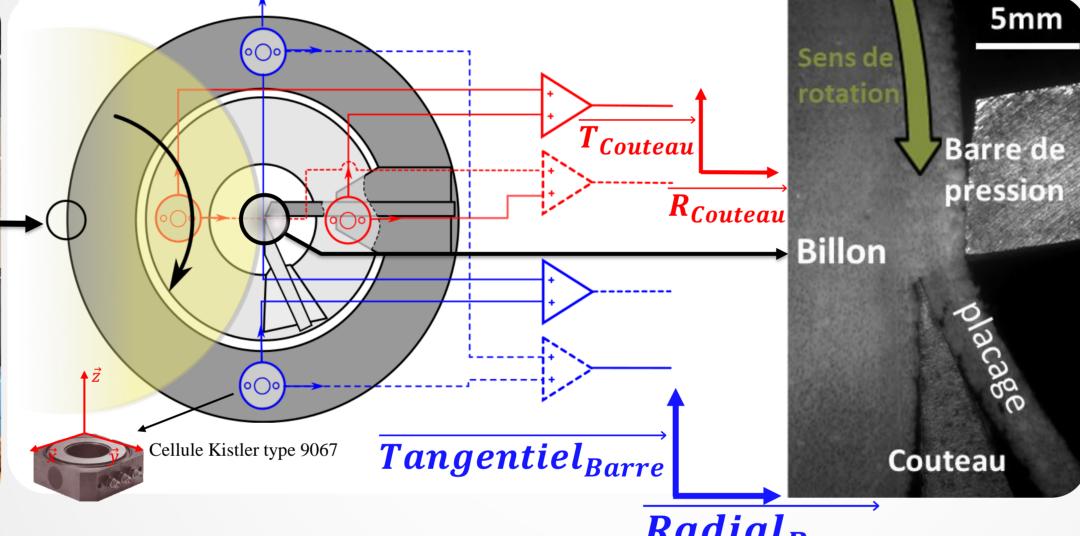
> Problématique :

Appliquer une méthode systématique de choix des paramètres géométriques de déroulage pour plusieurs couples essence/épaisseur

> Paramètres :

- Paramètres fixés selon les règles métiers
- Paramètres à déterminer


> Contraintes :


Nombre important de modalités à tester avec une ressource limitée

Matériel et méthodes

1. Prédétermination des réglages en micro-déroulage sur des disques de bois : Micro-dérouleuse expérimentale (J-C Butaud, 1996)

Réglage recherché Angle de dépouille minimal assurant un déroulage stable (efforts radiaux constants légèrement négatifs = plongée du couteau en matière)

 $\overline{Radial_{Barre}}$

Les modalités :

- 4 essences (campagne sur l'érable à venir) (étuvé 48 h par trempage à 55 °C)
- 2 épaisseurs : 1,2 mm et 3,1 mm
- 3 taux de compression : 5%, 10%, 15%

4 répétitions par modalités :

- 1^{er} ,2^{ème} ,3^{ème} filmées à 250 Hz) mesure in situ des surépaisseurs et des longueurs de contact
- 4^{ème} filmée à 1000 Hz > visualisation fissuration et état de surface à l'angle de dépouille choisi

2. Application des réglages sur la dérouleuse industrielle

- Application des résultats obtenus en micro-déroulage
- Si déséquilibre des efforts radiaux :
- → Adaptation de l'angle de dépouille
- Si fissuration ou rugosité du placage trop importante:
- Adaptation du taux de compression

Les modalités : nombre de billons variable en fonction des essences

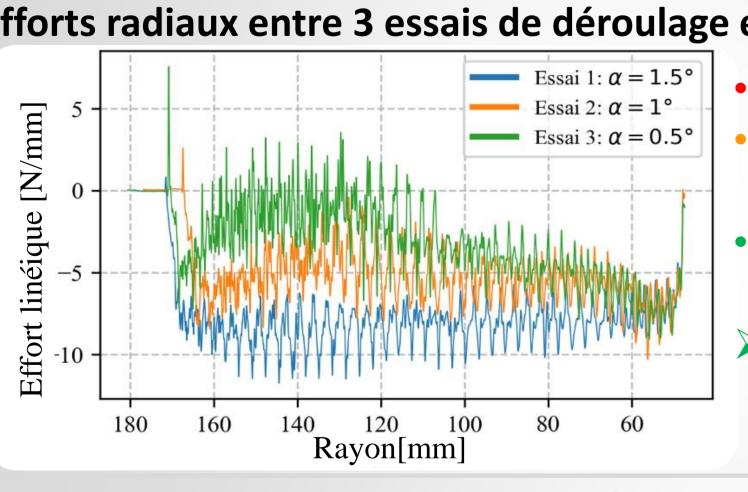
Objectif : même proportion de placage de 3,1 mm pour toutes les essences

Nombre de essence et				et de	placag	jes ob	tenus p	ar
	Charme		Robinier		Chêne rouge		Chêne Pubescent	
	billons	placages	billons	placages	billons	placages	billons	placages
1,2 mm	2	278	2	66	1	60	2	141
3.1 mm	6	238	4	57	2	54	1	93

Comparaison des résultats entre les deux machines

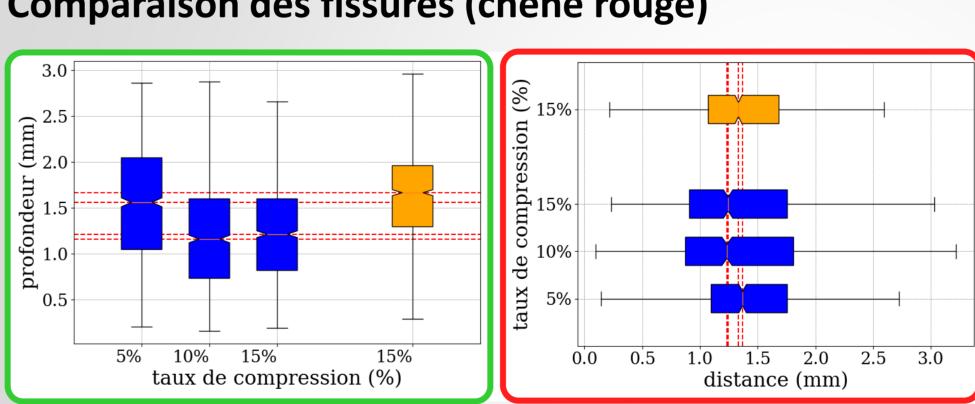
Mesure optique de la fissuration **SMOF** (Pałubicki et al. (2010)) Caractéristiques des fissures :

Denaud et al. (2019)

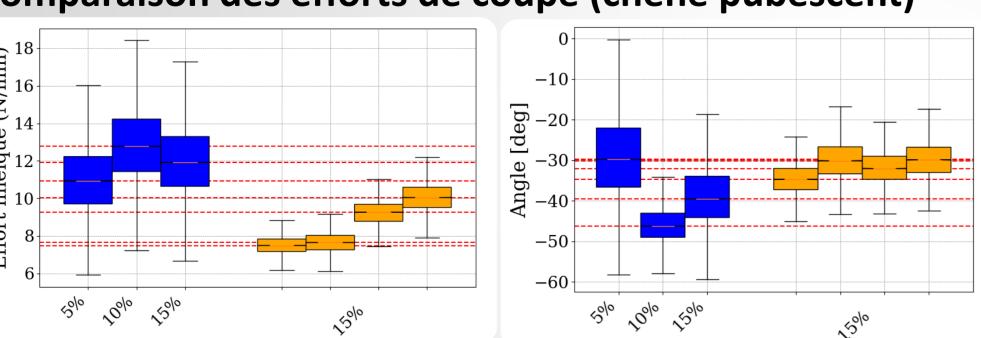

Espacement Profondeur

Efforts linéiques sur les outils :

- Efforts linéiques sur la barre et le couteau pour des réglages identiques
- Angle de la résultante des efforts de coupe


Résultats et conclusions

Efforts radiaux entre 3 essais de déroulage en variant l'angle de dépouille


- α = 0,5°: inversion des efforts radiaux α= 1°: même phénomène, amplitude plus faible
- α = 1,5°: stabilité des efforts en régime établi
- plus petit angle assurant des efforts radiaux stables -> angle retenu

Comparaison des fissures (chêne rouge)

- micro-déroulage-déroulage industriel
- Diminution de la profondeur de fissuration uniquement entre 5 et
- 10% en micro-déroulage Fissuration plus profonde sur la machine industrielle
- Fissuration machine industrielle à taux de pression 15% similaire à celle de la micro-dérouleuse à 5%

Comparaison des efforts de coupe (chêne pubescent)

- La résultante des efforts de coupe en moyenne plus élevée en micro-déroulage qu'en déroulage (et dispersion plus importante)
- Direction des efforts de coupe à 5% de pression en micro-déroulage similaires à ceux à 15% en sur la dérouleuse industrielle

Conclusions et perspectives:

- Dépouilles en micro-déroulage adaptées pour les diamètres importants en déroulage industriel. Pas de variation de l'angle de dépouille en micro-déroulage, à déterminer sur la dérouleuse industrielle.
- La comparaison entre les efforts sur la barre à venir

Remerciements

Cette étude est menée dans le cadre du projet Feuillus CHOC « Valorisation des feuillus en construction par une approche holistique, collaborative et entrepreneuriale » (2023-2027). L'ADEME est remerciée pour son soutient financier (Grant N°2282D0474-A)