

13ème congrès de mécanique (CMM2017) 11-14 Avril 2017 – Meknès

On the generalization of contour integral in threedimensional crack problem

<u>EL KABIR Soliman^{1,2}</u>, MOUTOU PITTI Rostand^{2,3}, DUBOIS Frederic¹, RECHO Naman^{2,3}, LAPUSTA Yuri^{3,4}

¹Université de Limoges, Centre du génie Civil, GEMH, 19300 Egletons, France ²Université Clermont Auvergne, Institut Pascal, BP 10448, 63000 Clermont-Ferrand, France ³CNRS, UMR 6602, Institut Pascal, 63171 Aubière, France ⁴Institut Français de Mécanique Avancée (IFMA), Institut Pascal, 63171 Aubière, France

Contacts : soliman.el-kabir@unilim.fr

Scientific context

□ Predicting the behavior of wood structures under mixed mode loading

Developing specific tools for three-dimensional configurations

Consider thickness effect under variable environments

□ Need for applications related to the inspection and diagnosis of structures

□ Numerical development of the J-integral concept for 3D problems.

 \Box The generalization toward its G_{θ}^{3D} implementation form

Several numerical applications are proposed

□ The efficiency of the proposed integral is compared

Scientific context

✓ Scientific context

✓ Analytical formulation (J^{3D} -integral, G_{θ}^{3D} , ...)

✓ Numerical implementation

✓ Conclusions and outlooks

J-integral in 3D configurations

Rice's integral

$$J^{2D} = \int_{\Gamma} \Big(W.\, n_1 - \big(\sigma_{ij}.\, n_j.\, u_{i,1} \big) \Big).\, d\Gamma$$

The main advance of this form is the presence of an arbitrary crack front line enclosed by a 3D surface

J^{3D} -integral description

The J-integral formulation is based on the Noether's theorem application (Noether 1918) :

$$\delta L = \iint_{V} \int_{t} \delta W. \, dV. \, dt = 0 \quad \Longleftrightarrow$$
A Gauss-Ostrogradski transformation allows us writing the Lagrangian's invariance in the form:

$$\int_{S} \left(W. n_{k} - (\sigma_{ij}. n_{j}. u_{i,k}) \right). \, dS + \iint_{V} \left(\sigma_{ij}. (\varepsilon_{ij})_{,k} - W_{,k} \right). \, dV = 0$$

$$J^{3D} = \iint_{S_{\Gamma_{out}}} \left(W. n_{1} - (\sigma_{ij}. n_{j}. u_{i,1}) \right). \, dS - \iint_{S_{cr}} \sigma_{ij}. u_{i,1}. n_{j}. \, dS - \iint_{V_{\Gamma_{out}}} \left(W_{,1} - \sigma_{ij}. (\varepsilon_{ij})_{,1} \right). \, dV$$

$$(1)$$
Stationary crack
$$Crack \text{ lips pressure}$$

$$Crack propagation$$

G_{θ}^{3D} Integral

$$\vec{\theta} = \frac{\vec{c}}{|\vec{c}|.C_w}$$

Linear crack front

$$\vec{\theta} = \frac{\vec{c}}{|\vec{c}|.C_w} \text{ on } S_{\Gamma_{out}} \text{ and } \vec{\theta} = 0 \text{ on } S_{\Gamma_{in}}$$

$$\vec{s}_{\Gamma_{out}} = \vec{0}$$

$$\vec{\theta} = \vec{0}$$

$$\vec{\theta} = \frac{\vec{c}}{|\vec{c}| \cdot \int_{cfl} dl}$$
Arbitrary crack front

$$\vec{\theta} = \frac{\vec{c}}{|\vec{c}| \cdot \int_{cfl} dl} \text{ on } S_{\Gamma_{out}} \text{ and } \vec{\theta} = 0 \text{ on } S_{\Gamma_{in}}$$

G(M) integral

$$G_{\theta} = \int_{V} (P_{kj}, \theta_{k,j}) \cdot n_{j} \cdot dV + \int_{S_{CF}} \sigma_{ij} \cdot u_{i,k} \cdot n_{j} \cdot \theta_{k} \cdot dS - \int_{V_{\Gamma_{2}}} \left(W_{,k} - \sigma_{ij} \cdot \left(\varepsilon_{ij} \right)_{,k} \right) \cdot \theta_{k} \cdot dV$$

$$(1) \qquad (2) \qquad (3)$$

 $\theta = 0$ Definition of $\vec{\theta}$ around a close crown

$$\vec{\theta} = 0 \text{ on } S_{\Gamma_{out}}, \vec{\theta} = \frac{\vec{c}}{|\vec{c}|.dw} \text{ on } C \cap S_{\Gamma_{out}} \text{ and } \vec{\theta} = 0 \text{ on } S_{\Gamma_{in}}$$

The average energy release rate can be calculated with an integration of along the crack front line divided by the crack width

Numerical validation

The finite element implementation is based on a Double Cantilever Beam loaded in an open mode.

Crack front

Numerical validation

We can shows the variations of the energy release rate versus R_c :

Numerical results validate the non-dependence of the integration domain with an average value of 30.3kJ/m²

Physical interpretation

Surface integration domains for the Bui's integral :

$$J_{Am} = \int_{\Gamma} \left(W. n_1 - \left(\sigma_{ij}. n_j. u_{i,1} \right) \right) . d\Gamma - \int_{A(\Gamma)} \frac{d}{dx_3} \left(\sigma_{i3}. u_{i,1} \right) . dA(\Gamma)$$
$$J^{2D}$$

Integration domains

 $R_{c} = 22mm$ Integration domain size for 2D model

Physical interpretation

Surface integration domains for the Bui's integral :

$$J_{Am} = \int_{\Gamma} \left(W. n_1 - \left(\sigma_{ij}. n_j. u_{i,1} \right) \right) . d\Gamma - \int_{A(\Gamma)} \frac{d}{dx_3} \left(\sigma_{i3}. u_{i,1} \right) . dA(\Gamma)$$
$$J^{2D}$$

Comparison between J^{2D} and J^{3D} approaches

Numerical validation

- J-integral parameter adapted to three-dimensional problems
- Numerical validation of the J-integral

- The definition of the average energy release rate distribution along the crack front
- Non-dependence integration domain characterizing invariant integral concept.
- Comparison with classical Amestoy's integral
- Generalization of the M-integral for more complex problems
- Application to a M-integral applied for three dimensional
- Generalization of the local mechanical fields
- Experimental strain analysis using the image correlation method

13ème congrès de mécanique (CMM2017) 11-14 Avril 2017 – Meknès

On the generalization of contour integral in threedimensional crack problem

<u>EL KABIR Soliman^{1,2}</u>, MOUTOU PITTI Rostand^{2,3}, DUBOIS Frederic¹, RECHO Naman^{2,3}, LAPUSTA Yuri^{3,4}

¹Université de Limoges, Centre du génie Civil, GEMH, 19300 Egletons, France ²Université Clermont Auvergne, Institut Pascal, BP 10448, 63000 Clermont-Ferrand, France ³CNRS, UMR 6602, Institut Pascal, 63171 Aubière, France ⁴Institut Français de Mécanique Avancée (IFMA), Institut Pascal, 63171 Aubière, France

Contacts : soliman.el-kabir@unilim.fr