





LABORATOIRE BOURGUIGNON DES MATÉRIAUX ET PROCÉDÉS



# High speed imaging planing experiment synchronized with multiphysical measurements

#### **Rémi CURTI, Bertrand MARCON**



#### **Chipper canter milling: context**



#### Usinage et fragmentation d'une dosse [Kuljich 2016]





 $3D \rightarrow 2D$ 





## **Experimental setup**



Telecentric objectives (Mitutoyo)

LABORATOIRE BOURGUIGNON DES MATÉRIAUX ET PROCÉDÉ

\_a

**ET METIERS** 

R. CURTI / B. MARCON

Up to 12 spots LEDs and guides

#### **Experimental setup**







#### Details about the signals synchronization strategy





\_a

## DEMONSTRATION



## Oriented fiber composed materials: Wood, CFRP...

#### BeechGreen state Vc 120 m/min

h 10 mm B 5 mm



#### **Cutting forces measurement**



#### → Dynamic compensation



Digital Image Correlation CorreliQ4

**GOAL:** Observe and validate a DEM for the serration of the chip (GranOO)





La<mark>Bo</mark>Ma

LABORATOIRE BOURGUIGNON



#### **Effective grain direction assessment**

Hypothèse : empilements des rayons ligneux et fibres alignés







120

## Other applications of the technique



## **Burr formation in Aluminum alloy machining**



#### **Surface Integrity characterization**



DES MATÉRIAUX ET PRO

#### A novel solution to assess the forces in HSM

[2017 Baizeau T. et al]



LABORATOIRE BOURGUIGNON MATÉRIAUX ET PRO

## Influence of microstruture on machining properties

Titanium alloy with only beta phase (obtain by dedicated heat treatment) Cutting thickness  $h = 100 \mu m$ Cutting width b = 3 mmCutting speed Vc = 10 m/min



| Photron | <ul> <li>FASTCAM SA-Z type 2100K-M-6</li> <li>1/50000 sec</li> <li>image : 10937</li> <li>Time : 17:45</li> </ul> | 1024 x 512<br>+273.425 ms | 40000 i/s<br>Début<br>Date : 2018/6/12 |
|---------|-------------------------------------------------------------------------------------------------------------------|---------------------------|----------------------------------------|
|         |                                                                                                                   |                           |                                        |
|         |                                                                                                                   |                           |                                        |
|         |                                                                                                                   |                           |                                        |
|         |                                                                                                                   |                           |                                        |
|         |                                                                                                                   |                           |                                        |





## Influence of microstruture on machining properties

#### Titanium alloy with only beta phase (obtain by dedicated heat treatment)

Cutting thickness  $h = 100 \mu m$ Cutting width b = 3 mmCutting speed Vc = 10 m/min





#### **EBSD** Analyse







#### **Another Ultra Hight Speed observation media**



# Even more accurate experimental set-up to obtain very accurate DIC strain fields



#### **Another Ultra Hight Speed observation media**



## Orthogonal cutting of steel at 1 m/s Lighting: double pulse Nd:Yag laser Imager: sCMOS double frame camera

sCMOS LaVision Camera + pulse Nd:Yag Laser

