Effet de l'orthotropie du bois sur les vitesses de propagation des ondes ultrasonores

X. ZHANG⁽¹⁾, M. TAKARLI⁽¹⁾, N. SAUVAT⁽¹⁾, F. DUBOIS⁽¹⁾, M. SBARTAI⁽²⁾, F. COURREGES⁽³⁾

⁽¹⁾ Univ. Limoges, GC2D, EA 3178, F-19300 Egletons, France ⁽²⁾ Univ. Bordeaux, I2M, UMR CNRS 5295, F-33405 Talence, France ⁽³⁾ Univ. Limoges, XLIM-RESYST, UMR CNRS 7252, 87000 Limoges, France

7èmes journées du GDR 3544 « Sciences du bois » Cluny, 20-22 novembre 2018

Contexte, problématique et Objectif

Contact:

xi.zhang@unilim.fr

- Ce travail de thèse s'inscrit dans le projet SOUBOIS (Surveillance et Auscultation des Ouvrage en Bois par Identification des Champs Hydrique et Mécanique vers une fiabilisation du CND-Bois), commencé en 2017 et financé par la région Nouvelle Aquitaine;
- L'étude présentée ici vise à fiabiliser la compréhension de l'approche ultrasonore en tant qu'outil de caractérisation et de prédiction. L'objectif de ce travail est 2. de proposer une approche contradictoire s'appuyant sur des résultats expérimentaux à l'échelle centimétrique et métrique, sur un développement numérique par Eléments Finis, et sur un complément proposé dans les développements analytiques.

Comparaison des résultats

L'allure de la courbe de vitesse de l'approche numérique est conformé à la loi d'Hankinson. Néanmoins, il reste à faire une étude paramétrique pour maitriser les effets des conditions limites et de la diffusion géométrique de l'onde.

Figure 7. Comparaison entre les résultats analytique , expérimental et numérique.

3. Approche Expérimentale

L'effet de l'orthotropie du bois sur les vitesses de compression est identique pour les échelles centimétrique et métrique;

4. <u>Comparaison des résultats et perspective</u>

Les allures des vitesses analytique, numérique et expérimentale sont similaire;

Pour affiner la convergence des approches, il faut 1°) une caractérisation expérimentale complète des constants d'élasticité du modèle numérique, 2°) une modélisation plus réaliste des conditions aux limites, 3°) de la forme de l'excitation ultrasonore.

