

VALORISATION DES COPRODUITS DE LA TRANSFORMATION DE L'ACAJOU

Bikoro Bi athomo Arsène^{1,2}, Safou-Tchiama Rodrigue², Eyma Florent³, Bertrand Charrier¹

 $^{
m I}$ CNRS/ Univ Pau & Pays Adour, Institut des Sciences Analytiques et $\,$ Physico-Chimie pour l'Environnement et les Materiaux- Xylomat, UMR5254, 40004, Mont de Marsan, France.

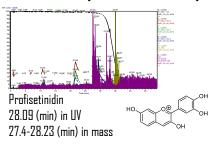
² Laboratoire de Recherche et de Valorisation du Matériau Bois(LaReVaBois), BP. 3989, LBV, Gabon.

³ Institut Clément Ader (ICA), Université de Toulouse, CNRS UMR 5312-INSA-ISAE-Mines Albi-UPS, Tarbes,

Stratégie de Valorisation des Coproduits

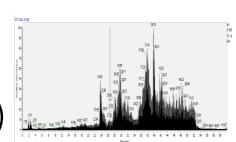
Développer des produits bio-sourcés

- Valorisation des molécules naturelles
- Elaboration d'un composite par thermocompression


Forêt: 400 millions of m^3 de bois exploitables (OIBT, 2015).

ATG

Concrètement:


Techniques d'analyses

Formulations: WPC

Polyphénols (tanins)

MALDI-TOF

Tests mécaniques, Hygroscopie, qualité

HPLC

