$I_{arepsilon}(arphi) = \mathbb{I}_{arphi}(arphi) + \mathbb{I$

CARACTÉRISATION DE LA DIFFUSION DE L'EAU DANS LE BOIS UTILISÉ POUR LA MANUFACTURE D'INSTRUMENT À VENT

Doctorant: ALKADRI Ahmad,

Encadrant(e)s: JULLIEN Delphine, ARNOULD Olivier, DYAKONOVA Nina, COQUILLAT Dominique, GRIL Joseph

CONTEXTE

Bois de grenadille

Propriétés hygromécaniques?

Diffusion? (D_L, D_R, D_T)

Teneur en eau (MC vs T et HR)

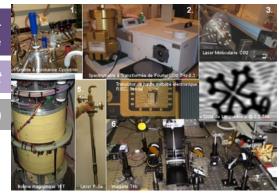
Retrait-gonflement (α_L , α_R , α_T)

Propriétés mécaniques

Matrice de compliance [C]

METHODES

Manips dans une chambre climatique


Mesure périodique

Fick's law: dC/dt = D d²C/dx² Analytique & Numérique

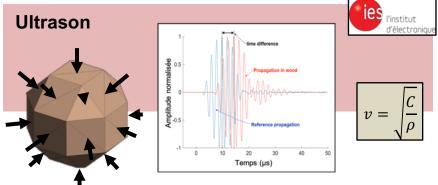
Technique THz — vérifier le modèle

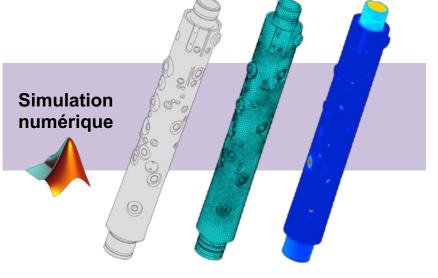
C sur x pendant t

 $I = I_0 \exp(-A)$


RESULTATS

t ≈ 3h


x


-9,0

-11,0

AVENIR

10

5

15

20

