

Surface characterisation of untreated wood surfaces after artificial and natural weathering

Surface characterisation of untreated wood surfaces after artificial and natural weathering

Wood species:

Quercus sp.

Castaneae sp.

Pseudotsuga menziesii

Measurements carried out:

FTIR

ESEM observation

Visual observation

Surface roughness

Colour measurements

Microbiological contamination

Poster No. D 16

Julia BUCHNER
Mark IRLE
Christophe BELLONCLE
Franck MICHAUD
Nicola MACCHIONI

Surface characterisation of untreated wood surfaces after artificial and natural weathering Julia BUCHNER, Mark IRLE, Christophe BELLONCLE, Franck MICHAUD, Nicola MACCHIONI

ROUPE ESB

weathering

esearch background

The aim of the project is to identify any synergistic effects between biotic factors such as bacteria (Actinomycetes and Eubacteria) and furging (Basidiomycota) and Asionycota) and abiotic factors such as light, temperature and moisture on the weathering of wood surfaces in use class 3. It is expected that through the exposure of several wood species to natural and artificial weathering, each of the weathering parameters can be understood more clearly and especially the influence of biotic factors can be estimated.

Objective

Wood samples are weathered naturally outdoors (for half a year and one year) as well as artificially (for 6 and 12 weeks) in a QUV as shown in Table 1. Visual, chemical as well as microbiological changes to the surfaces will be measured.

Samples and Measuremen

Mainly tangential surfaces of oak (Quercus sp.), chestnut (Castaneae sp.) and Douglas fir wood (Pseudotsuga menziezii) are used to investigate the surface characteristics.

Following measurements are carried out: Microbiological contamination Scans/ Visual observation

Colour measurements
ESEM observation
Surface roughness

FTIR measurements

Indication of the areas of measurements for each method

Weathering method

Natural as well as artificial weathering methods have been chosen for this weathering experiment.

uns weathering	exper	illient.		
Weathering technique	Step	Function	Specification	Time [h]
EN 927 (UVSC)	1	Condensation 45±3 °C		24
	2	Sub cycle	Step 3+4 (48x)	144
	3	UVA-340 60±3°C, 0,89 W/m ² /nm		2,5
	4	Spray		0,5
EN 927 without spray (UVC)	1	Condensation	45±3 °C	24
	2	Sub cycle	Step 3+4 (48x)	144
	3	UVA-340	60±3 °C, 0,89 W/m²/nm	2,5
	4	Idle	-	0,5
EN 927 with higher irradiation (UVASC)	1	Condensation	45±3 °C	24
	2	Sub cycle	Step 3+4 (48x)	144
	3	UVA-340	60±3 °C, 1,55 W/m²/nm	2,5
	4	Spray		0.5

Table 1: Artificial weathering techniques derived from EN 927

CONTAC

ECOLE SUPERIEURE DU BOIS I LIMBHA Julia Buchner julia.buchner@ecoledubois.fr

ACKNOWLEDGEMEN

TRANSYLVANIA UNIVERSITY OF BRASOV Lidia Gurau

Result

The experiments are ongoing, therefore only parts of the results can be

Surface roughnes

			W _a			Rsk	Rku	Rpk
Pseudotsuga menziesii	6,3	20,7	18,8	155,9	104,5	-0,5	12,1	15,4
Quercus robur	7,5	17,5	13,8	179,3	69,3	-3,3	20,5	12,6
Castanea sp.	9,9	32,5	29,0	247,1	129,9	-3,5	21,5	11,9

Observing the artificially weathered wood surfaces with the naked eye, a difference in colour and solidity of the top layer can be observed. The impact of spraying is noticeable.

Figure 2: Samples prior to weathering compared to samples exposed to UV light and condensation and la

ECENA - beresis

A pin was used to make a marker hole in the lower left corner of each sample in order to help locate the same observation point after weathering.

Figure 3: ESEM observation of a Oak (upper pictures) and D (left) and after exposure to UV, spray and condensation (rig

7º journées du GDR Sciences du Bois 2018/ Cluny