

Influence de la vitesse de chauffe sur la consommation énergétique du procédé de torréfaction de la biomasse

Présenté par : Anélie PETRISSANS

GDR Bois, 18-20 Novembre 2020

Pyrolyse de la biomasse

Chimie des biopolymères

Collaboration internationale

LERMAB, University of Lorraine, Epinal, France.

National Cheng Kung University, Tainan, Taiwan.

Georgia Southern University, Statesboro, USA.

Motivation et objectifs

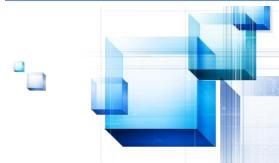
Etapes de la forrefaction

Discussion

Aspect chimique

- La vitesse de montée en température n'a pas d'influence les chemins réactionnels.
- Pour un taux de dégradation similaire, la composition ne change pas.

Aspect énergétique


- Faible vitesse de montée en température : économique. Permet d'atteindre un taux de dégradation désirée à basse température.
- Transfert de chaleur homogène.

~Merci pour votre attention ~ ~Merci bonr votre attention ~

