MISE EN ŒUVRE DE CHITOSANES FONCTIONNALISES DANS LA FORMULATION D'ADHESIFS STRUCTURAUX A DESTINATION DE LA FILIERE BOIS

J. Silvestre¹, P. Michaud¹, C. Delattre^{1,2}, H. de Baynast¹

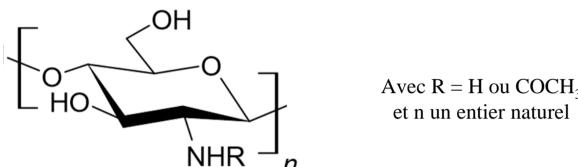
¹ Institut Pascal, Université Clermont Auvergne, CNRS, Clermont Auvergne INP, F-63000 Clermont-Ferrand, France ² Institut Universitaire de France (IUF), 1 Rue Descartes, 75005 Paris, France

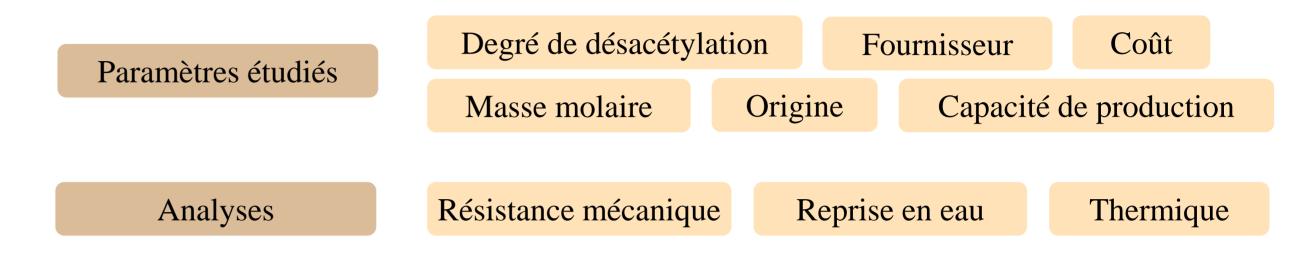
Introduction

La grande majorité des adhésifs pour le collage du bois présents sur le marché aujourd'hui sont synthétiques et issus de ressources non renouvelables. Ils contiennent par ailleurs de nombreuses substances nocives pour l'environnement et la santé [1]. Les préoccupations croissantes en matière de santé et d'environnement mais également l'évolution de la législation, incitent les industries du bois à développer des **adhésifs à partir de bioressources**.

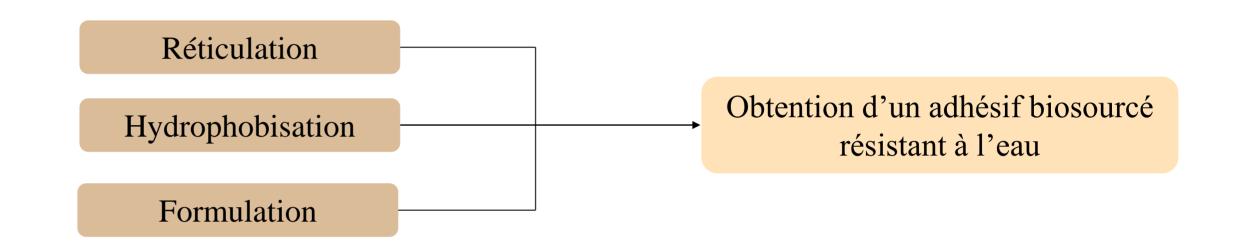
Le **chitosane** (Figure 1) est un polymère biosourcé obtenu après désacétylation de la chitine, deuxième polysaccharide naturel le plus abondant sur Terre. Le chitosane a démontré de réelles propriétés en tant qu'adhésif pour le collage du bois [2]. Cependant, cet adhésif perd une grande partie de ses propriétés adhésives lorsqu'il est soumis à une atmosphère humide.

Cette étude a pour but la modification du chitosane et l'élaboration de formulations visant à conserver ses propriétés adhésives vis-à-vis du bois y compris en présence d'eau.




Figure 1 : Molécule de chitosane

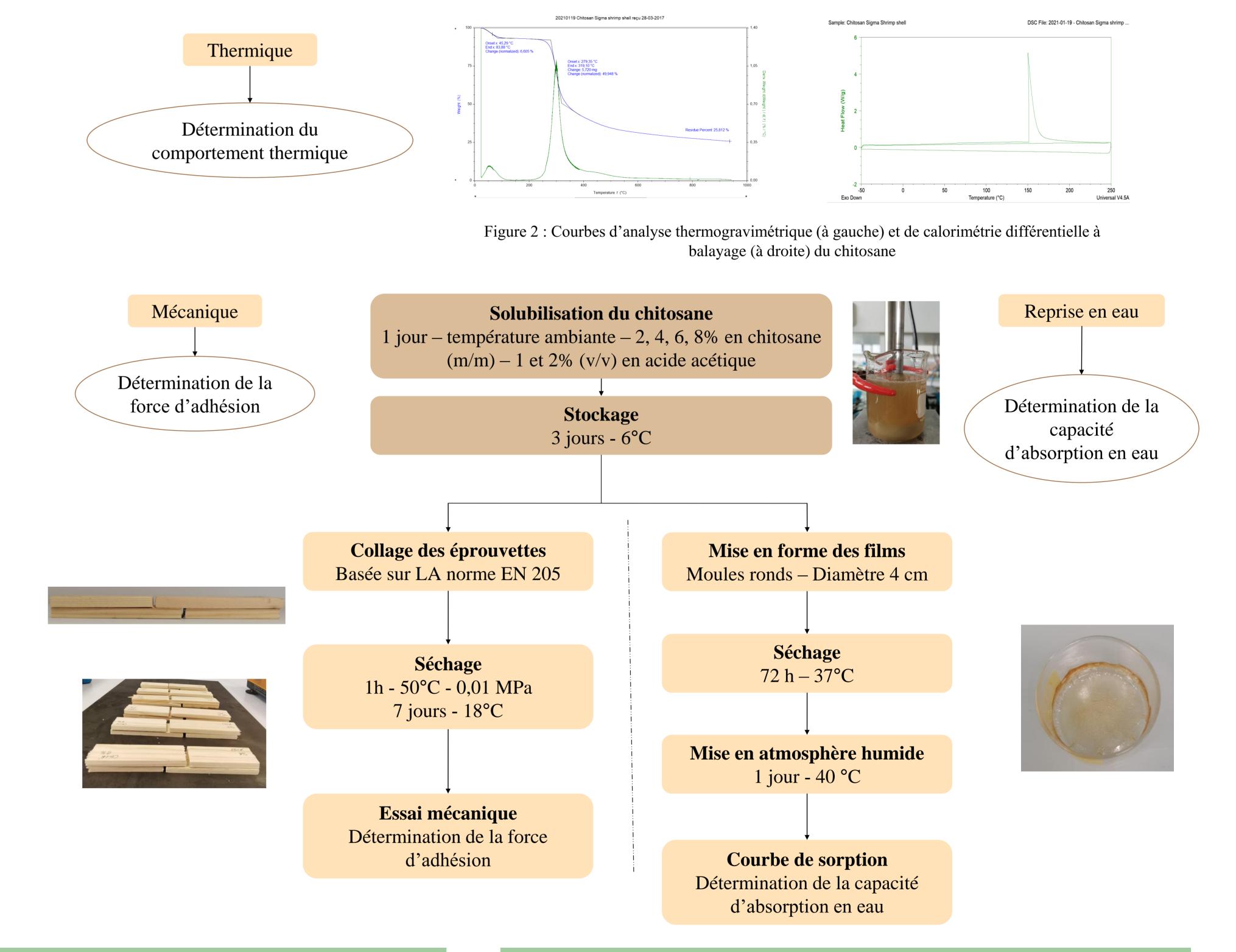
 $DD = \frac{\text{nombre d'unités désacétylées}}{\text{nombre total d'unités de monomères}} > 0$


Equation 1 : Définition du degré de désacétylation

Objectifs

✓ Sélection du ou des chitosane(s)

✓ Modification du ou des chitosane(s)



Matières premières

Tableau 1 : Données caractéristiques des 9 chitosanes pré-sélectionnés

Référence	Fournisseur	Masse molaire (g.mol ⁻¹)	Viscosité (cPs)	DD (%)	Origine
CS1	Sigma Aldrich Low molecular weight (MW)	50 000-190 000	20-300	75-85	Animale
CS2	Sigma Aldrich Medium MW	Non connue	200-800	75-85	Animale
CS3	Sigma Aldrich High MW	310 000- 375 000	800-2000	>75	Animale
CS4	Sigma Aldrich From shrimp shell	Non connue	Non connue	>75	Animale
CS5	Fisher Scientific	600 000- 800 000	50-200	85	Non connue
CS6	France Chitine	98 000	Non connue	90	Non connue
CS7	Glentham Life Sciences	Non connue	22,9	>85	Fongique
CS8	ChiBio Biotech	Non connue	1000	>98	Fongique
CS9	Kitozyme	Non connue	1-15	84	Fongique

Caractérisation du chitosane

Conclusions et perspectives

- > Sélection des chitosanes aux meilleures propriétés physico-chimiques
- > Synthèse, formulation et analyses des solutions adhésives de chitosanes modifiés
- Etude de la faisabilité des différentes réactions sur le chitosane : protocoles laboratoires, possibilité d'industrialisation

Bibliographie

- 1. Patel, A.K.; Michaud, P.; Petit, E.; de Baynast, H.; Grédiac, M.; Mathias, J.-D. Development of a Chitosan-Based Adhesive. Application to Wood Bonding. J. Appl. Polym. Sci. 2013, 127, 5014–5021, doi:10.1002/app.38097
- 2. Pillai, C.K.S.; Paul, W.; Sharma, C.P. Chitin and Chitosan Polymers: Chemistry, Solubility and Fiber Formation. *Prog. Polym. Sci.* 2009, 34, 641–678, doi:10.1016/j.progpolymsci.2009.04.001.

