Hydraulic signals induced by bending in artificial and natural branches : link with plant mechanoperception and long-distance signaling in trees

Jean-François Louf, Geoffroy Guéna, Olivier Pouliquen and Yoël Forterre* Éric Badel, Hervé Cochard and Bruno Moulia†

* IUSTI — CNRS, Université d'Aix-Marseille, France *† PIAF — INRA, Université de Clermont-Ferrand, France*

Growth response to mechanical stimuli (Thigmo-morphogenesis)

Recent evidence of hydro/mechanical coupling in plants É. Badel, H. Cochard, B. Moulia (PIAF)

 \rightarrow Origin of the long distance signaling? Pressure pulse hypothesis? Julien 1993, Malone 1994

 \rightarrow Physical mechanisms? (amplitude, speed, damping)

Our approach : study of the poroelastic reponse of artificial and natural branches

Artificial branches : physical modelling

Original 3D microfluidic device: elastometric *PDMS* beam drilled with μ -channels

Quantitative measurements on natural branches

Natural branches properties

Length L ~ 20cm, Diameter D ~ 1cm Porosity ~ 1-20 %

 \rightarrow Pressure response to bending is non-linear: $\Delta P \sim \epsilon^2$

Physical explanation and key parameters

Model : bending a porous beam induces a squeezing of the cross-section initial state final state

 \rightarrow Same non-linear pressure response !

Comparison between artificial and natural branches

<u>Relation pressure / volume: bulk modulus *B*</u>

Perspectives:

Generalisation to other species Role of these hydromechanical coupling in plants mechanoperception