Arts et Métiers ParisTech - Luxscan Technologies

Journée « Thèses des bois »

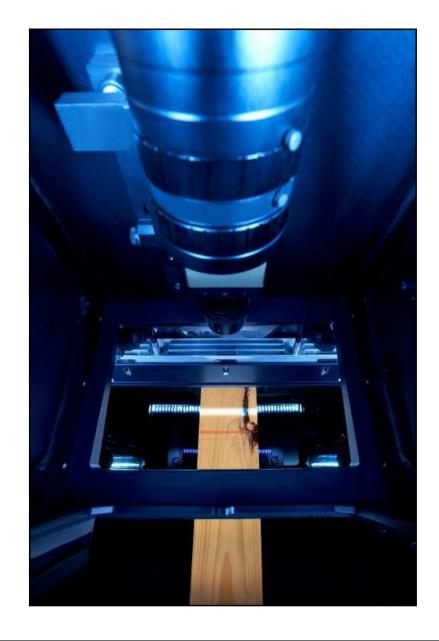
Modélisation du comportement mécanique des bois de structures par densitométrie X et imagerie laser

Laurent BLERON, Rémy MARCHAL, Fabrice MERIAUDEAU, Raphaël VOGRIG

Sommaire

Introduction

- Contexte et objectifs de la thèse
- Introduction au classement mécanique


Modèle du Profilé Equivalent

- Principe de fonctionnement
- Construction du modèle
- Modélisation de la pente de fil

Résultats

- Intérêt du modèle
- Intérêt de la pente de fil

Conclusions

INTRODUCTION

Quel sont les objectifs de ces travaux de thèse ?

Introduction

Contexte et objectifs de la thèse

- Thèse CIFRE financée par Luxscan Technologies
- Suite des travaux de G. ROBLOT (2010)
- Développement du scanner optique CombiScan+ comme machine de classement
- Application industrielle : contrainte forte sur les cadences de production

INTRODUCTION

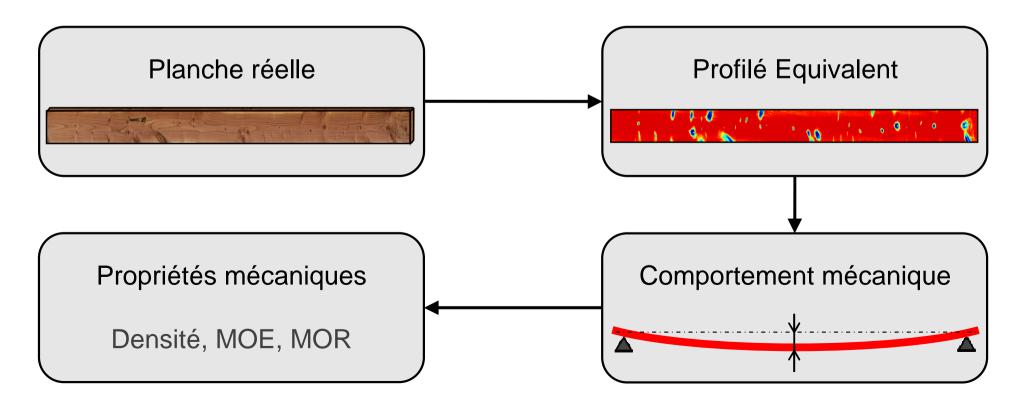
En quoi consiste le classement mécanique ?

Introduction Classement par machine

- Objectif : mesure ou estimation de 3 propriétés indicatrices (IPs)
- Masse volumique moyenne
- Module élastique en flexion (ou plus rarement en traction)
- Contrainte de rupture en flexion (ou en traction) : mesure impossible!

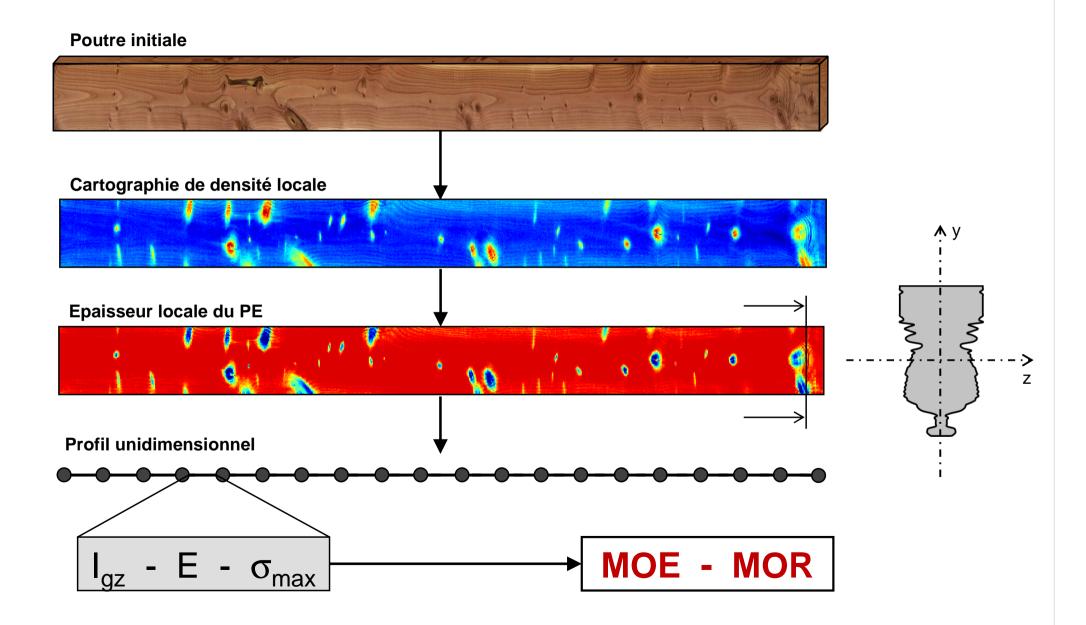
		Résineux												Feuillus							
		C14	C16	C18	C20	C22	C24	C27	C30	C35	C40	C45	C50	D18	D24	D30	D35	D40	D50	D60	D70
Propriétés de résistance (en N/mm²)																					
Flexion	f _{m,k}	14	16	18	20	22	24	27	30	35	40	45	50	18	24	30	35	40	50	60	70
Traction axiale	<i>f</i> _{t,0,k}	8	10	11	12	13	14	16	18	21	24	27	30	11	14	18	21	24	30	36	42
Traction transversale	f _{t,90,k}	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6
Compression axiale	f _{c,0,k}	16	17	18	19	20	21	22	23	25	26	27	29	18	21	23	25	26	29	32	34
Compression transversale	<i>f</i> _{c,90,k}	2,0	2,2	2,2	2,3	2,4	2,5	2,6	2,7	2,8	2,9	3,1	3,2	7,5	7,8	8,0	8,1	8,3	9,3	10,5	13,5
Cisaillement	$f_{v,k}$	3,0	3,2	3,4	3,6	3,8	4,0	4,0	4,0	4,0	4,0	4,0	4,0	3,4	4,0	4,0	4,0	4,0	4,0	4,5	5,0
Propriétés de rigidité (en kN/mm²)																					
Module moyen d'élasticité axiale	E _{0,mean}	7	8	9	9,5	10	11	11,5	12	13	14	15	16	9,5	10	11	12	13	14	17	20
Module d'élasticité axiale (au 5 ^e percentile)	E _{0,05}	4,7	5,4	6,0	6,4	6,7	7,4	7,7	8,0	8,7	9,4	10,0	10,7	8	8.5	9.2	10,1	10,9	11,8	14,3	16,8
Module moyen d'élasticité transversale	E _{90,mean}	0,23	0,27	0,30	0,32	0,33	0,37	0,38	0,40	0,43	0,47	0,50	0,53	0,63	0,67	0,73	0,80	0,86	0,93	1,13	1,33
Module moyen de cisaillement	G _{mean}	0,44	0,5	0,56	0,59	0,63	0,69	0,72	0,75	0,81	0,88	0,94	1,00	0,59	0,62	0,69	0,75	0,81	0,88	1,06	1,25
Masse volumique (en kg/m³)																					
Masse volumique	$ ho_{k}$	290	310	320	330	340	350	370	380	400	420	440	460	475	485	530	540	550	620	700	900
Masse volumique moyenne	$ ho_{mean}$	350	370	380	390	410	420	450	460	480	500	520	550	570	580	640	650	660	750	840	1080

MODÈLE DU PROFILÉ ÉQUIVALENT


Quel est le principe de fonctionnement de ce modèle ?

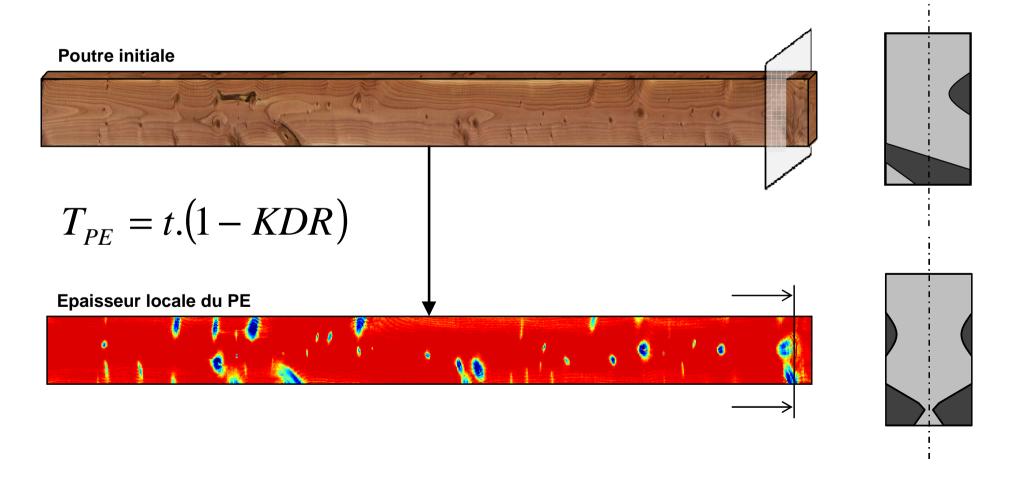
Modèle du Profilé Equivalent Construction d'un poutre équivalente

- Profilé Equivalent de même comportement que la planche initiale
- Longueur et largeur identique à la planche initiale
- Matériau homogène par section
- Variation locale de propriétés ⇔ variation de l'épaisseur locale du PE
- Calcul du comportement du PE, puis déduction des propriétés de la planche initiale


MODÈLE DU PROFILÉ ÉQUIVALENT

Comment le Profilé Equivalent est-il construit ?

Modèle du Profilé Equivalent Processus de construction

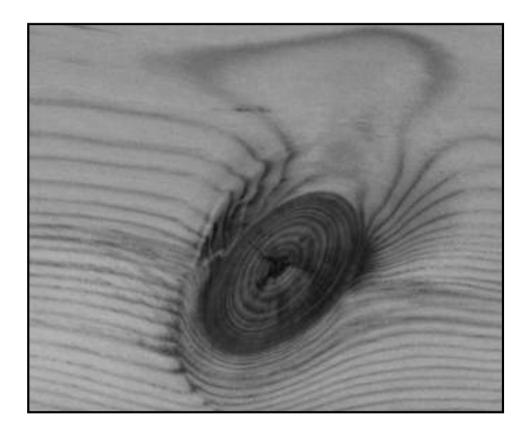


Modèle du Profilé Equivalent Epaisseur locale du PE

- Prise en compte des noeuds
- Epaisseur locale du PE = épaisseur du bois sain (hors nœuds)
- Nécessite le calcul du Knots Depth Ratio (KDR) à partir de la densité locale

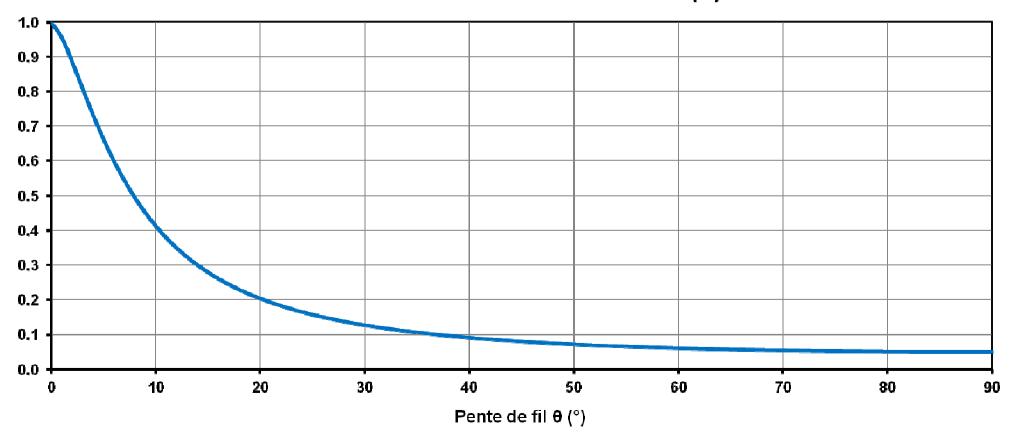
MODÈLE DU PROFILÉ ÉQUIVALENT

Comment la pente de fil s'intègre-t-elle dans le modèle ?


Modèle du Profilé Equivalent Nature de la pente de fil

- Angle entre les axes des fibres et du sciage
- Propriété globale ou singularité locale
- Observée essentiellement à proximité des noeuds

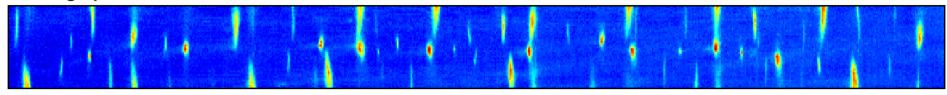
Modèle du Profilé Equivalent Influence de la pente de fil



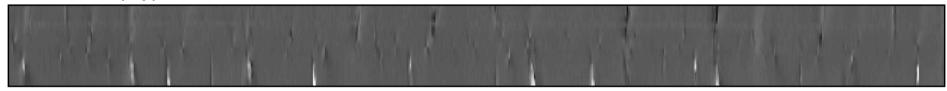
Nature orthotropique du bois

- Propriétés longitudinales (L) > radiales (R) ≈ tangentiel (T)
- $E(\theta) = E(0).h(\theta)$

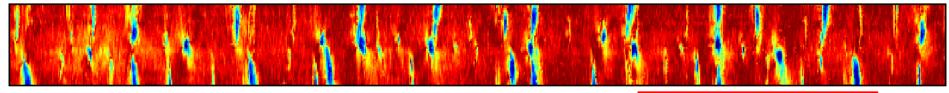
Formule de Hankinson : $\theta \rightarrow h(\theta)$



Modèle du Profilé Equivalent Prise en compte de la pente de fil



Cartographie de densité locale


Pente de fil (top)

Pente de fil (bottom)

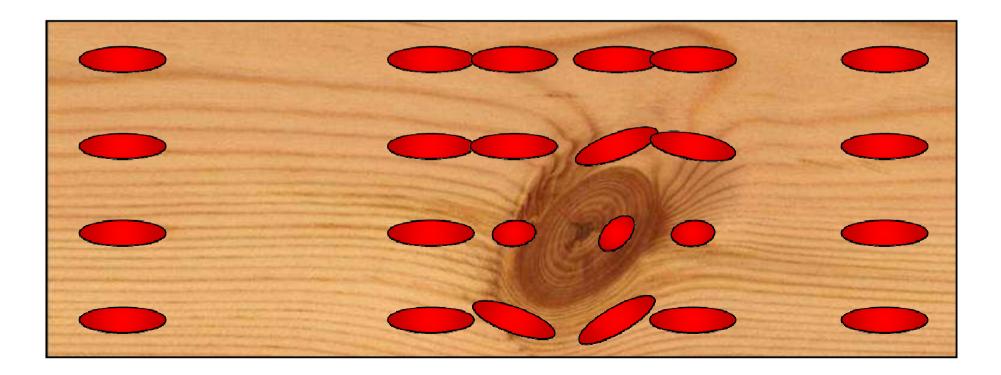
Epaisseur locale du PE

$$T_{PE} = t.(1 - KDR).\frac{1}{t} \int h(\theta) dz$$

MODÈLE DU PROFILÉ ÉQUIVALENT

Comment la pente de fil est-elle évaluée ?

16


Modèle du Profilé Equivalent Mesure de la pente de fil

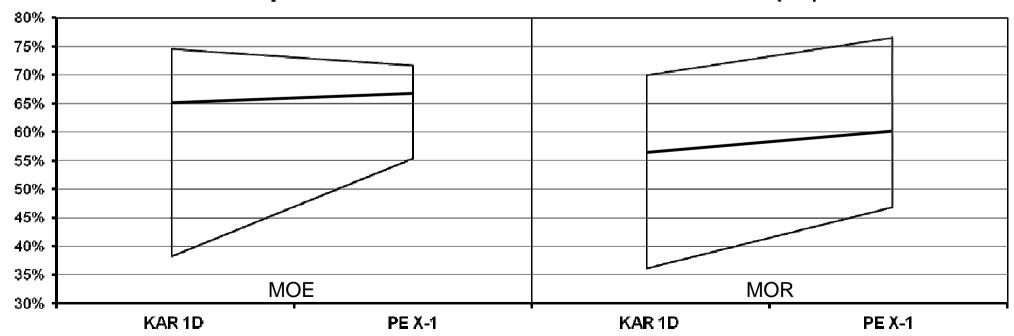
Principe de l'effet trachéides

- Projection d'un laser point à la surface du bois
- Diffusion de la lumière au sein du bois, préférentiellement selon l'axe des fibres
- Une partie de la lumière diffusée est visible en surface, et forme une ellipse
- Mesure de la pente de fil à partir de l'orientation et du facteur de forme de l'ellipse

RÉSULTATS

Le modèle du Profilé Equivalent est-il performant ?

Résultats Performances du Profilé Equivalent

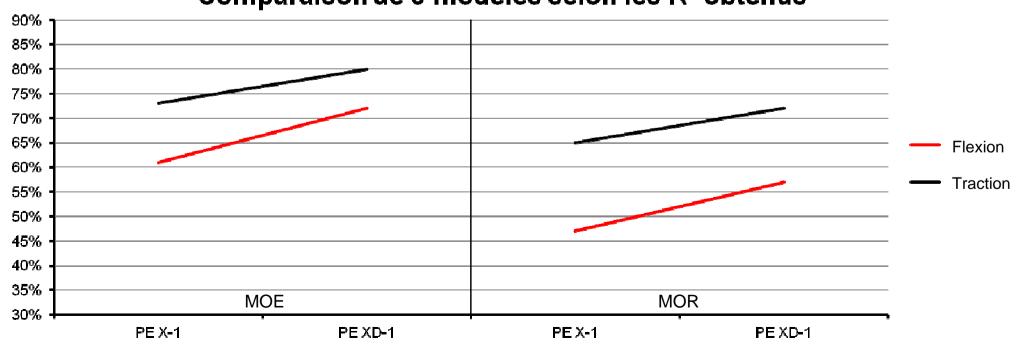


- Comparaison KAR / PE sans tenir compte de la pente de fil
- Test réalisé sur 7 lots de d'épicéa / pin / douglas (3000 planches)
- Comparaison du KAR 1D et du Profilé Equivalent
- Valeurs minimales, moyennes, et maximales de R² relevées

→ Légère amélioration grâce à l'utilisation du Profilé Equivalent

Comparaison des résultats du KAR et du PE (R²)

RÉSULTATS


La prise en compte de la pente de fil est-elle bénéfique ?

Résultats Influence de la pente de fil

- Comparaison KAR / PE en tenant compte de la pente de fil
- Prise en compte des lots où la pente de fil a pu être mesurée (1400 planches)
- Influence du E-Scan réduite après prise en compte de la pente de fil
- → Bonne progression due à la prise en compte de la pente de fil

CONCLUSIONS

Conclusions

Modèle du Profilé Equivalent

- Adaptable à tout type de sollicitation plane
- permet de prendre en compte tout type de singularité
- Précision légèrement supérieure au KAR

Modélisation de la Pente de Fil

- Permet une amélioration conséquente des performances
- Robustesse également améliorée

→ Homologation prochaine du scanner optique

Merci pour votre attention

Avez-vous des questions?

